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Abstract The structure of a two-dimensional film formed by
adsorbed polymer chains was studied by means of Monte
Carlo simulations. The polymer chains were represented by
linear sequences of lattice beads and positions of these beads
were restricted to vertices of a two-dimensional square lattice.
Two different Monte Carlo methods were employed to deter-
mine the properties of the model system. The first was the
random sequential adsorption (RSA) and the second one was
based on Monte Carlo simulations with a Verdier-Stockmayer
sampling algorithm. The methodology concerning the deter-
mination of the percolation thresholds for an infinite chain
system was discussed. The influence of the chain length on
both thresholds was presented and discussed. It was shown
that the RSA method gave considerably lower thresholds for
longer chains. This behavior can be explained by a different
pool of chain conformations used in the calculations in both
methods under consideration.
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Introduction

Percolation is a phenomenon in which a cluster formed by
given objects becomes infinite, i.e., in real systems it ex-
tends from one border of the system to another [1]. In
general, one of the common theoretical procedures is to
determine the percolation threshold, i.e., the minimum con-
centration of objects at which the percolations too place. It
has all features of the phase transition and thus, from many
years it has been an object of theoretical interest [1]. The

percolation theory has a lot of applications in physics,
especially in disordered systems and porous media.
Computer simulation of this process can usually be realized
by random sequential adsorption (RSA) [2–4]. RSA can
model the adsorption of atoms and small molecules, binding
of large ligands to polymer chains or protein to solid sur-
faces, polymers or biological membranes. The lattice ap-
proximation is commonly used for the consideration of the
percolation in many systems in order to suppress the degree
of freedom and for computational purposes. The objects
or their parts (beads) are located in vertices of a quasi-
crystalline lattice – in such a case a cluster is formed when
an object has neighbors, i.e., the distance between objects
(or parts of objects) is equal to the lattice unit. Usually, the
percolation problem is classified as site percolation where
sites are blocked and bond percolation where bonds joining
the sites are blocked. One has to remember that the perco-
lation of the polymer chain is a special case of bond-site
percolation where bonds are correlated because the chains
are integral objects.

The most popular large objects studied using the RSA
method were stiff elongated rods (needles) [5–10]. The
percolation in such a system was found to be quite different
from that for other large objects: the percolation threshold
does not change monotonically with the length of the object
because needles tend to form locally ordered clusters. In
spite of rather extensive studies there are still some incon-
sistencies in the description of the scaling behavior of per-
colation and jamming thresholds with aspect ratios of these
objects. Systems containing other elongated objects (ellip-
soids, rectangles) were also studied and it was shown that
the aspect ratio was a crucial parameter that determined the
percolation threshold [11–13].

The consideration of the percolation phenomenon in sys-
tems containing other large and irregular objects like polymer
chains requires some studies to evaluate calculation methods
for this purpose. Short flexible chains (oligomers) were studied
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up to date mainly by means of the RSA method by [14–18].
Pandey et al. studied the percolation and jamming (the maxi-
mum coverage) in such systems but it is difficult to refer to
their results because of quite different determination of the
thresholds [14, 15]. Nieto et al. performed a detailed and a
solid study in which they concentrated on the universality of
the percolation process and the influence of the lattice repre-
sentation on it [16, 17]. Recent studies of two-dimensional
polymer systems performed by Zia et al. have shown interest-
ing behavior of the bond percolation threshold [19–22], how-
ever, this model was different from others as polymer chains
can cross themselves. The percolation of semi-flexible chains
was recently studied by the RSA method [23] showing the
temperature dependencies of percolation threshold and a non
monotonic behavior of these threshold at some conditions.
Mixtures of small objects (oligomers) of a different shape were
also studied by means of the RSA method [24] while mixtures
of stiff rods and flexible chains appeared to be tractable by a
theory (a connectedness Ornstein-Zernike formalism) [25].
Long flexible chains were recently studied by means of the
RSA [10] and the CMA (the cooperative motion algorithm)
[26–29] simulation methods. The influence of the presence of
explicit solvent molecules, the analysis of the clusters formed
by macromolecules and the confirmation of the universal crit-
ical behavior of these systems were the main results discussed
in these works.

In this paper we studied the structure of two-dimensional
systems consisting of flexible linear polymer chains near the
percolation threshold. The representation of polymer chains
was very simple: macromolecules were represented by the
sequences of identical beads and positions of these beads
were restricted to vertices of a square lattice. The excluded
volume was the only polymer-polymer potential. The main
question addressed was to compare and evaluate methods
used for studies of the percolation in systems containing
long flexible chains. The paper is organized in the following
way: in section The model and the algorithms we describe in
detail the idealized representation of polymer chains and
both simulation methods used (RSA and a Metropolis-like
algorithm). In section Results and discussion we present the
results, mainly percolation thresholds and discuss the com-
parison of simulation methods and their evaluation. The
section Conclusions contains the most important conclu-
sions concerning comparison of results and validating of
both simulation methods.

The model and the algorithms

The polymer representation

Flexible linear polymer chains were approximated by se-
quences of beads without any atomic details and single bead

represented some chemical mers. Each chain in the sys-
tem consisted of N beads and the number of chains was
n. In order to make the calculations more efficient a
lattice approximation was introduced: the positions of
polymer beads were limited to vertices of a square lat-
tice. The excluded volume was the only potential intro-
duced into the model and, therefore, the chains could not
cross themselves. No local potential was introduced and
thus, the chains were fully flexible. Other long-distance
interactions were assumed to be identical, i.e., the system
was athermal and corresponded to good solvent condi-
tions. The system was studied in a large two-dimensional
Monte Carlo box and the edge of this box L was chosen
to be large enough when compared to the chain’s diam-
eter in order to avoid the chain interacting with its image
and in order to minimize the influence of the system’s
size on the percolation threshold. Periodic boundary con-
ditions were also introduced in both directions. The
problem concerning the finite size of the Monte Carlo
box in our studies will be discussed below in the next
section. The structure of the polymer system was deter-
mined by means of two different simulation methods.

The Metropolis-like algorithm

The properties of the systems under consideration were cal-
culated by means of the Monte Carlo simulation employing
an algorithm based on local changes of chain’s conformation
(Fig. 1a). The set of these local moves consisted of: 1-bead
motion, 2-beadmotion, 1-bead endmodification and 2-bead
endmodifications [30]. Additionallywe usedwavemotions,
where fragments of chain (three consecutive segments) were
transferred randomly along the chain and exchanged with a
single bond and the reptation motion. These last two
micromodifications are essential for the ergodicity of the
process and make the relaxation of the system considerably
faster [30–32]. A polymer bead was picked randomly and an
attempt of a motion was performed and accepted/rejected
due to excluded volume and geometrical constraints. A
Monte Carlo cycle was defined as one attempt of each
local motion applied in average to one bead. An initial
polymer’s conformation was constructed in a process of
the simultaneous growing and the equilibration proce-
dure: a system containing n chains each containing N
beads was eventually built. For each system under con-
sideration 10–15 independent Monte Carlo simulation
runs were performed. Each simulation run consisted of
107–1010 cycles and at the start of each simulation run
the equilibration run was performed, which lasted 106–
109 cycles. The criterion of the equilibration of the
system was the stability of some time-mean parameters
of the system, such as the end-to-end distance and the
radius of gyration.
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Random sequential adsorption

In this method polymer chains were subsequently adsorbed
on a substrate. We considered a Monte Carlo box L×L for
this purpose. A two-dimensional chain was randomly se-
lected from an earlier prepared library of conformations and
put on the substrate. The adsorbed macromolecules could
not overlap and this was realized by the forbidding of the
double occupancy of lattice points by polymer beads. All
chains were immobilized, e.g., no conformational changes
were allowed and the diffusion process was forbidden
(Fig. 1b). Simulation started with an empty substrate and
for each chain at first we randomly selected the position of
the chain’s beginning. Then, we checked all sites along the
chains contour. If all these sites were empty, the new chain
was added to the system, otherwise the entire procedure was
repeated. A chain adsorbed on the substrate formed a new
cluster. If any element of the added chain was at the distance
of one lattice unit from an already deposited chain (or a
cluster of chains) the newly added chain formed one cluster
with them.

Before the RSA process we prepared libraries containing a
collection of polymers’ conformations for a given chain
length N. For shorter chains the libraries were filled with all
possible conformations. For longer chains the libraries were
created using the modifications of chain conformations by the
algorithm described in section The polymer representation.
Libraries contained up to 107 different conformations and
these conformations were independent one from the other,
i.e., each of the chains was recorded after a large time step.
We used the libraries to avoid creating non-overlapping poly-
mer chains during the simulations (and problem with biased
statistics when generating self-avoiding walks) and thus to
speed up the RSA process significantly. When neighboring
chains formed continuous path from one system edge to the
opposite, this was called a percolation. In order to recognize

the moment of percolation a Hoshen & Kopelman-like algo-
rithm was applied. In this cluster identification algorithm one
travels over all lattice points row-wise and identifies clusters
consisting of neighboring beads. The tree of labels indicates
the connections between the identified clusters [1, 33].
The RSA procedure was repeated for each system 100–
1000 times.

Results and discussion

Simulations were performed for a chain length N from 3 to
500 (the Metropolis-like algorithm) and for N from 1 to 500
(the RSA method). In order to determine the influence of the
size of the system on the percolation threshold the simula-
tions were performed in the Monte Carlo box with the edge
L=50, 100, 200, 1000 and 2000. The polymer concentration
was defined as a fraction of lattice sites occupied by chains,
i.e., the number of polymer beads to the total number of sites
in the system: φ=nN/L2.

The structure of the adsorbed polymer layer was fre-
quently a subject of theoretical and simulation studies [34].
Therefore, we will focus on the percolation in chain systems
only. Using the Metropolis-like algorithm one has to detect
if a given configuration of the system contains a percolated
polymer cluster or not. Therefore, we can determine the
percolation probability calculated as the ratio of the number
of percolated systems to the total number of configurations
generated for a given set of parameters. Figure 2 presents the
percolation probability P as a function of the polymer con-
centration φ. All P(φ) curves are typical, i.e., S-shaped and
the increase of the chain length shifts the curve toward lower
polymer concentrations. Qualitatively the same behavior
was found for other two-dimensional polymer chains: for
short chains on the square lattice [17], long linear chains
with explicit solvent molecules on the triangular lattice [26]

Fig. 1 Schemes of algorithms used in simulations. All two-dimensional
chains are present on the surface (in blue) and they undergo local changes
of conformation (old conformation is marked in red and the new ones in

green) (a). Random sequential adsorption where a two-dimensional chain
(in red) is put on a surface and accepted (in green) when it doesn’t crosses
with chains already present on the surfaces (in blue) (b)
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and the square lattice [21] and for off-lattice hard ellipsoids
[11]. One can also observe that the slope of curves decreases
with the chains length which is caused by the finite size of
the system.

The percolation threshold can be determined from the S-
shaped probability curves as an inflection point. In order to
calculate the value of the thresholds for infinitely large
system two procedures were proposed. The first one finds
the inflection point on a P(φ) curve using the following
fitting [17, 35]:

P φð Þ ¼ 1− 1þ exp
φ−cp
a

� �� �−1
ð1Þ

where a is a constant that determines the slope of the curve
and with a→ 0 the curve reduces to the step function (for an
infinitely long chain). The next step involved the finite-size
scaling analysis. The extrapolation of the percolation thresh-
old to the thermodynamic limit was done by fitting to the
scaling relation:

cp Lð Þ−cp ∞ð Þ�� ��eL−1=ν; ð2Þ

where cp(L) and cp(∞) are percolation thresholds for the
Monte Carlo box L×L and for an infinite system respectively,
and ν is a critical exponent (theoretical predictions give
ν=4/3) [1]. In Fig. 3 we show the calculated values of cp
versus (L/N) -1/n. All curves are linear, i.e., the extrapolation of
the percolation thresholds toward an infinite system can be
made according to Eq. (2). One can also notice from this
figure that the corrections to the thresholds obtained from
simulations in a large MC box (2000 × 2000) are on the order
of 10−3, which is below the standard error.

The second method of the determination of the percola-
tion threshold for an infinite system is based on the finding

that percolation probability curves P(φ) for systems of dif-
ferent size intersect in one point [11, 21, 36]. Figure 4 shows
the percolation probabilities P as functions of the polymer
concentrations φ for the chain N=10 calculated for some
sizes of the Monte Carlo box L. The increase of the system
makes the probability curve steeper (for the infinite system
one expects the step function). All curves intersect in one
point which can give the value of the percolation threshold
for the infinitely large box. The values obtained using this
methodology are exactly the same as those obtained in the
first method. Both series of the percolation thresholds are
presented in Table 1.

The percolation thresholds calculated via both simulation
techniques are presented in Fig. 5 and plotted against the chain
length N. One can observe that the threshold decreases with
increase of the length of the macromolecule (the number of
beads comprising the chain) regardless of the simulation
method used. There is one more interesting observation

Fig. 2 Plot of the percolation probability P obtained in the MC
method as a function of the polymer concentration φ. The case of the
Monte Carlo box L =1000. Chain lengths are given in the inset

Fig. 3 Log-log plot of the percolation thresholds cp obtained in the
MC method as a function of the (L/N) -1/n for some chain lengths

Fig. 4 Plot of the percolation probability P obtained via the MC
method as a function of the polymer concentration φ. The case of
chain N=10. The sizes of the Monte Carlo box L are given in the inset
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concerning the behavior of the percolation thresholds: the
values obtained in the MC method are always higher than
those from the RSA method and this difference increases with
the chain length (at least for the chain lengths studied). The
reason of the difference between RSA and MC predictions
will be discussed below.

The question arises what would be the percolation thresh-
old for infinitely long flexible chains? To answer this ques-
tion one should consider the polymer local density, i.e., the
number of polymer segments within an equivalent ellipse
defined as<N/S2>. For a single chain<S2>increases faster
than the number of segments because<S2>scales as N3/2 for
two-dimensional systems. Therefore, the local density ap-
proaches zero for chains of the infinite length. The percola-
tion threshold corresponds to the system near the crossover
from dilute to semidilute solution [37, 38]. The chains that
are separated and behave mainly independently start to

touch each other. Thus, the polymer density in the entire
system near this crossover should approach zero as within a
single chain. On the other hand, the number of chains in an
infinite Monte Carlo box would also be infinite. Therefore,
it is difficult to state if the percolation threshold, which
decreases with the length of chain that was observed in
our simulations, will eventually approach zero or other
non-zero value.

A formula describing the influence of the chain length on
the percolation threshold was proposed by Nieto et al. [16].
It was based on the Galam and Maugier equation formulated
for a site and bond percolation:

cp ¼ po d−1ð Þ c−1ð Þ½ �−a; ð3Þ

where d is the dimension of the system, c is lattice coordi-
nation number while po and a are fitting parameters. Nieto
and al. extended this formula for chains consisting of N
elements giving the following expressions for both param-
eters a and po:

a Nð Þ ¼ Aaexp −N
.
Ba

� �
; po Nð Þ ¼ Apoexp −N

.
Bpo

� �
:

ð4Þ

Aa, Ba, Apo and Bpo are new fitting parameters. It has to be
stressed that in this formula cp approaches zero when the
chain length becomes infinite. Unfortunately, the fitting
parameters A and B have no physical meaning. On the other
hand, the next publication of Nieto at al. [17] suggests non-
zero value of the percolation threshold for infinitely long
chain. In order to describe the dependency of the percolation
threshold on the chain length they proposed a different
formula:

Fig. 5 Plot of percolation thresholds cp for as a function of chain
length N obtained via both methods studied

Table 1 The percola-
tion thresholds obtained
by the RSA and MC
methods. The values of
thresholds are extrapo-
lated toward infinite
system (see text for
details).

N RSA MC

1 0.592(2) –

2 0.562(2) –

3 0.549(2) 0.550(2)

5 0.523(2) 0.521(3)

10 0.480(3) 0.484(3)

20 0.428(5) 0.439(4)

30 0.398(5) 0.411(4)

40 0.375(8) 0.387(6)

50 0.354(6) 0.375(8)

75 0.325(8) 0.354(10)

100 0.315(11) 0.345(9)

200 0.282(12) 0.320(11)

300 0.261(14) 0.305(12)

300 0.244(15) 0.291(11)

400 0.230(17) 0.278(14)

Fig. 6 The reduced mean-squared radius of gyration <S2 >/N of a
chain successfully put on the substrate as a function of the pseudo-time
in the RSA method (see text for details). The chain lengths are given in
the inset
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cp ¼ c�p þΩexp −
κ
N

� �
; ð5Þ

where cp*, Ω and κ are fitting parameters and the parameter
cp* corresponds to the percolation threshold for the infinite-
ly long chain. The fitting of their data gave cp*=0.461±
0.001 but it has to be stressed that Nieto et al. studied very
short chains only (N≤15). Fitting of our data gives a similar
result for short chains (cp*=0.447) while quite a different
one for the entire range of the chain lengths (cp*=0.261).

Thus, the parameters of Eq. (5) depend on the chain length
and the formula is not valid.

One has to remember that the percolation threshold de-
pends on the chain’s fractal dimension, which is character-
istic for the entire class of objects. This hypothesis was
already validated for a slightly different model of two-
dimensional linear and cyclic chains on triangular lattice
with explicit solvent molecules introduced [26, 27]. This
suggests that the main factor, which determines the perco-
lation threshold of a complex object, is its structure.

It was shown that the RSA method gave lower percolation
threshold when compared to those obtained by MC simula-
tions. This discrepancy can be explained in the following way.
The size of a single chain can be expressed by means of the
radius of gyration<S2 >, i.e., the mean-squared distance be-
tween polymer beads belonged to the same chains and its
center of mass. In the MC method all chains have size that is
characteristic for a given polymer density and in average each
chain has the same dimension. In the RSA method the situa-
tion is different. Figure 6 presents the values of the chains’
reduced mean-squared radius of gyration<S2 >/N as a func-
tion of the pseudo-time. Pseudo-time is a number of a chain
put successfully on the substrate divided by the number of
chains that had been approached after reaching the percolation
threshold. These reduced values are necessary in order to
study size’s changes for chains of different length. For short
(N=5 and 10) chains their size along with the RSA procedure

Fig. 7 The distribution of polymer beads around the chain’s center of
mass for the chain N=80 obtained via both methods studied

Fig. 8 Snapshots of the system
at the percolation threshold for
systems consisted of chains N=5
(a), N=10 (b), N=50 (c) and
N=100 (d)
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almost does not change – for these chains the dependency of
the polymer size on the density of the system is rather small.
The size of long chains (N=100) considerably decreases dur-
ing the adsorption process. It should be expected as each next
chain meets smaller space to be fit in. This behavior was
implicitly confirmed by Wang and Pandey who had found
that the radius of gyration of deposited chains (in the RSA
method) was less sensitive to the polymer density and that
chains featured memory of time of deposition [15]. The dif-
ferences in the average structure of a single chain in both
methods used can be studied by the analysis of the spatial
distribution of polymer beads in a chain. Figure 7 presents the
distributions of polymer beads around the chain’s center of
mass. One can observe that the shape of both curves is similar
while the distribution of beads of the chain used in the MC
method is slightly broader. This distribution of segments
confirms that the only difference between average chains in
both methods is their size.

It is possible to obtain the same percolation threshold in
both methods. For this purpose one has to prepare a different
library of chains conformation from which chains are ran-
domly picked up and put on the substrate. This library
should contain conformation typical for a polymer solution
at the density near the percolation threshold determined via
the RSA method. Then, the next library containing confor-
mations typical for the density equal to the new percolation
threshold should be prepared and the next RSA procedure
should be performed. This iterative procedure should give
the same percolation threshold as the MC method.

The differences in the structure of the surface covered by
a film formed of short and long flexible linear macromole-
cules can also be visualized. Figure 8 presents typical snap-
shots of some polymer systems under consideration taken at
the percolation threshold. The decreasing density of the
system is clearly visible as the percolation threshold changes
here from 0.521 to 0.345. The percolation clusters are the
largest among other clusters and their size increases when
the chain length increases. The number of polymer beads in
percolation clusters considerably decreases when going
from short to long chains. One can also observe the presence
of non-percolated islands inside the percolation cluster and
the decreasing number of these non-percolating islands
when going from short to long chains.

Conclusions

An idealized polymer model was developed in order to study
the percolation in systems containing long linear flexible
macromolecules. In this model the polymer chains were rep-
resented as sequences of identical beads and the positions of
these beads were restricted to vertices of a square lattice. The
model systems were athermal, i.e., the excluded volume was

the only potential introduced. Two different computer simu-
lations techniques were used to determine the properties of the
polymer systems: random sequential adsorption and Monte
Carlo simulations with a Metropolis-like algorithm.

It was shown that the usage of the random sequential
adsorption method led to lower percolation thresholds in the
entire range of the chain lengths studied. The percolation
threshold decreases in the entire range of lengths studied
while for shorter chains (N≤50) this decrease is rather rapid.
Because of these differences in prediction of the percolation
threshold, the question of validity of the RSA method for
long flexible chain systems arises. One can argue that the
RSA method simulates the systems where the macromole-
cules precipitate from a diluted solution at good solvent con-
ditions and are firmly bound by the surface (the adsorption is
irreversible, for instance because of chemical bonds). On the
other hand, in the Metropolis method adsorbed objects can
move along the surface and their conformations are typical for
polymer systems near the crossover between the diluted and
semidiluted solution. In other words, the average size of a
polymer chain in theMetropolis method is smaller than that of
an isolated chain used in the RSA method which enables
better packing and results in lower percolation thresholds.
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